COFDM

- A brief history
- COFDM principles
- DVB-T framing structure
- COFDM transmission sequence
- Countering against echoes and reflections
- DVB-T variable parameters

COFDM

- A brief history
- COFDM principles
- DVB-T framing structure
- COFDM transmission sequence
- Countering against echoes and reflections
- DVB-T variable parameters

A brief history of COFDM - 1

- OFDM grew out of Multi Carrier Modulation (MCM)
 - Military HF radio (late 1950's)
 - Divides stream into several parallel bit streams
 - Bit streams used to modulate several carriers
- OFDM A special form of MCM
 - Patent issued in the US in 1970 (number 3,488445) submitted by R.W.
 Chang in 1966
- Time domain signals used to ensure subcarrier orthogonality
 - Major contribution by Shannon in defining waveforms in Euclidean space, allowing definitions of orthogonality
 - No need for steep band pass filters
 - Sub-carrier spectra allowed to overlap
 - Need for real time FFT's
- Popular in the 1980's and used for digital audio broadcasting (DAB)
 - OFDM + QPSK modulation

A brief history of COFDM - 2

- Various associated bodies
 - 1992 (Digital ideo Broadcast voluntary group of 200 companies)
 VB-S, DVB-C in 1994 and DVB-T in early 1997
 - dTTb (digtial Terrestrial Television broadcast project)
 - Demonstrator to show the feasibility of a commercial receiver
 - DVBird (Digital Video Broadcast integrated receiver decoder)
 - Technical specifications needed and partitioning of electronic functions
 - DTG (UK based Digital Terrestrial Group, set up in 1995 to make a working broadcast solution for the UK to meet Government plans)
 - First commercial broadcasts in late 1998 with simulcast and later OnDigital services.

COFDM

- A brief history
- COFDM principles
- DVB-T framing structure
- COFDM transmission sequence
- Countering against echoes and reflections
- DVB-T variable parameters

What is COFDM ?

- Coded
- Orthogonal
- Frequency
- Division
- Multiplex

IDFT
$$s(t_i) = \frac{2W}{N} \sum_{f_k=1}^{N} S(f_k) e^{j2\pi f_k t_i/N}$$

DFT $S(f_k) = \frac{T}{N} \sum_{t_i=1}^{N} s(t_i) e^{-j2\pi f_k t_i/N}$

BPF = Band pass filter

COFDM

- A brief history
- COFDM principles
- DVB-T framing structure
- COFDM transmission sequence
- Countering against echoes and reflections
- DVB-T variable parameters

DVB-T framing structure

- Fixed number of carriers used
 - ✓ Allows receiver to lock onto signal
 - ✓ Keeps constant power levels
 - ✓ '2K' system in UK (1705 carriers)
 - ✓ '8K' also an option (6817 carriers)
- Carrier types
 - ✓ Data carriers 2,4 or 6 bits per symbol, per carrier
 - ✓ TPS carriers Transmission information
 - ✓ Pilot carriers -Channel estimation at receiver, Tx at boosted power levels
 - Continual 177 in '8K' mode, 45 in '2K' always in same position within symbol
 - Scattered 524 in '8K' mode, 121 in '2K' pseudo random within symbol
- Modulation used
 - ✓ Increases number of bits that can be transmitted
 - ✓ Eg each carrier transports 4 bits for QAM-16

DVB-T framing structure

Single frequency carrier.

One of 6817 (8k) or 1705 (2k) discrete modulation carriers. Either: Data (6048 or 1 512) Continual pilot (177 or 45) Scattered pilot (524 0r 131) TPS carrier (68 or 17)

OFDM symbol (frequency domain)

. . . .

6817 carriers (8K) 1705 carriers (2K)

DVB-T framing structure

COFDM

- A brief history
- COFDM principles
- DVB-T framing structure
- COFDM transmission sequence
- Countering against echoes and reflections
- DVB-T variable parameters

DVB transport stream

Data scrambling

Pseudo Random Binary Sequence (PRBS)

Energy dispersal to ensure adequate binary transitions

Error correction

- Error prone environment hence small packets (188 bytes) with additional error correction data (16 bytes)
 - Known as Forward Error Correction (FEC)
 - Also known as channel coding
 - Two main parts:
 - Outer coding for burst errors (Reed Solomon and Forney)
 - Inner coding (Convolution coding)

Outer coding

Reed Solomon

- Operates over individual packets
- Corrects up to 8 erroneous bytes per packet
- Non correctable flag for > 8 byte errors
- Bandwidth overhead is 8%

Forney convolution interleaving

- Increases efficiency of the RS coding
- Spreads errors over a greater area

Inner coding

- Convolution coding
 - 2 identical streams produced from outer coded stream
 - Output stream formed from combination of these new streams
 - Not all simultaneous bits taken hence rate defined (DVB-T code rates: 1/2, 2/3, 3/4, 5/6, 7/8)
- Puncture rate impact on data rate
 - Puncture rate of 3/4 means 1 out of 4 bits is removed
 - Data rate becomes: $(1/2)^*(4/3) = 2/3$ of original (ie code rate is 2/3)

No puncturing data rate is halved since convolution encoder produces two identical streams

Every 4th bit removed

Bit and Symbol Interleaving

Bite-wise interleaving

- Inner coder has two output streams
- Bit wise interleaver produces 2, 4 or 6 streams for QPSK, 16-QAM and
 64-QAM respectively

Symbol interleaving

- The 2, 4 or 6 bit words are mapped onto the OFDM carriers
- 1512 for 2k mode or 6048 for 8K mode

Amplitude and Phase Mapping (example)

12 phases / 3 amplitudes2 amplitudes appear on 4 phases1 amplitude appears on 8 phases

Pilots and TPS addition

- Pilots
 - Continual pilots
 - Always in the same place within the OFDM symbol
 - ✓ 45 in 2k mode, 177 in 8k mode
 - Transmitted at increased power levels
 - Used to estimate the channel characteristics and therefore make corrections
 - Scattered pilots
 - Located as a pre-defined pattern such that there is an equal number per symbol
 - ✓ 131 in 2K mode, 524 in 8k mode
 - Transmitted at increased power levels
 - ✓ Used in conjunction with continual pilots to estimate the channel distortion

Pilots and TPS addition

- TPS (Transmission Parameter Signalling)
 - Type of modulation used
 - Hierarchy information
 - Guard interval
 - Inner code rates
 - Transmission mode (ie 2k or 8k)
 - Frame number within a super frame (ie 0 to 3)
 - DPSK (Differential Phase Shift Keying) modulation used due to robustness

IFFT, time shift and combination

- IDFT at transmitter, DFT at receiver
 - FFT actually used (computational algorithm) for summing operation

 $\frac{N}{2}\log N$

- FFT's must be powers of 2, hence '2k' or '8k' modes
- Much faster that normal DFT
- Eg if 8k point DFT takes 670 ms then the FFT takes .53 ms
- Complex to real conversion

 N^2

- Q (real) and I (Imaginary) are added, sampled and output

Guard Interval Insertion

Replication of end of symbol placed at beginning

Final stages - Transmission

- D/A conversion
- Filtering
- Upconversion and transmission

What is COFDM ?

- C Coded
- O Orthogonal
- F Frequency
- D Division
- M Multiplex

Orthogonality

- Definition possible due to signals being described as vectors
- Spacing between carriers is minimised
 - Results close to theoretical maximum are achieved ($\Delta f \propto 1/T$)
 - Expensive in analogue FDM due to costly band pass filters

COFDM

- A brief history
- COFDM principles
- DVB-T framing structure
- COFDM transmission sequence
- Countering against echoes and reflections
- DVB-T variable parameters

Countering against echoes and reflections

Repetition of signal to counter echoes

- Echoes caused by
 - Moving receiver
 - Moving transmitter
 - Reflection from moving or static objects
 - Single Frequency Networks (SFN's)

Countering against echoes and reflections

- Echo length is easily calculated
 - Assuming 2k Mode with Guard interval 1/32
 - 1/32 of the symbol transmits in 7 us
 - Maximum delay = 7 us
 - Distance = 3×10^8 m/s x 7 us
 - Distance = 2.1 km

COFDM

- A brief history
- COFDM principles
- DVB-T framing structure
- COFDM transmission sequence
- Countering against echoes and reflections
- DVB-T variable parameters

DVB-T variable parameters

- Carrier mode: 2k or 8k
- Type of modulation: QPSK, 16-QAM, 64-QAM
- Guard Interval: 1/4, 1/8, 1/16, 1/64
- Inner code rate: 1/2, 2/3, 3/4, 5/6, 7/8
- Hierarchical modes
- Selection of transmission bandwidth (6/7/8 MHz)

DVB-T variable parameters Useful data rate (M bits / sec)

Modulation	Code rate	Guard interval			
		1/4	1/8	1/16	1/32
QPSK	1/2	4.98	5.53	5.85	6.03
	2/3	6.64	7.37	7.81	8.04
	3/4	7.46	8.29	8.78	9.05
	5/6	8.29	9.22	9.76	10.05
	7/8	8.71	9.68	10.25	10.56
16-QAM	2 1/2	9.95	11.06	11.71	12.06
	2/3	13.27	14.75	15.61	16.09
	3/4	14.93	16.59	17.56	18.10
	5/6	16.59	18.43	19.52	20.11
	7/8	17.42	19.35	20.49	21.11
64-QAM	1/2	14.93	16.59	17.56	18.10
	2/3	19.91	22.12	23.42	24.13
	3/4	22.39	24.88	26.35	27.14
	5/6	24.88	27.65	29.27	30.16
りそう行為	7/8	26.13	29.03	30.74	31.67

DVB-T variable parameters

- Significance of mode and guard interval
 - '8k' system allows good reception with long multi-path echoes
 - '8k' system is therefore suitable for single frequency networks (SFN's)
 - '2k' system more suited to multi frequency or single transmitter networks
 - A larger guard interval implies a lower bit-rate efficiency
 - The guard interval value is therefore a trade-off between bit-rate and network tolerance to echoes and reflections

DVB-T hierarchy coding

Low priority carriers

DVB-T hierarchy coding

In poor S/N ratio conditions 16 64-QAM constellation points can be demodulated as one QPSK constellation point

High priority carriers

DVB-T hierarchy coding

- Transmission of the same or different data for:
 - Same or different program can be transmitted in HD and SD + greater error recovery
 - Poor reception areas can view SD if HD not possible
- Transmission of different resolutions / characteristics:
 - Reception by different cost receivers (high end, low end, mobile, portable)
- Other data can be transmitted related to the program